资源类型

期刊论文 115

会议视频 16

年份

2023 13

2022 27

2021 10

2020 12

2019 13

2018 7

2017 4

2016 5

2015 9

2014 2

2013 6

2012 2

2011 4

2010 2

2009 1

2008 4

2007 3

2006 5

2005 1

2003 1

展开 ︾

关键词

智能制造 7

农业科学 6

智能机器人 3

人工智能 2

人机协作 2

仿生机器人 2

信息技术 2

机器人 2

移动机器人 2

BP算法 1

HIFU 1

Hilare 机器人 1

三峡升船机 1

下肢外骨骼机器人;人机交互;运动学习;轨迹生成;运动基元;黑盒优化 1

下肢;外骨骼;自平衡;双足行走;模块化设计 1

专利分析 1

个性化机器人 1

习惯学习 1

乳腺癌 1

展开 ︾

检索范围:

排序: 展示方式:

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0699-x

摘要: Many organisms have attachment organs with excellent functions, such as adhesion, clinging, and grasping, as a result of biological evolution to adapt to complex living environments. From nanoscale to macroscale, each type of adhesive organ has its own underlying mechanisms. Many biological adhesive mechanisms have been studied and can be incorporated into robot designs. This paper presents a systematic review of reversible biological adhesive methods and the bioinspired attachment devices that can be used in robotics. The study discussed how biological adhesive methods, such as dry adhesion, wet adhesion, mechanical adhesion, and sub-ambient pressure adhesion, progress in research. The morphology of typical adhesive organs, as well as the corresponding attachment models, is highlighted. The current state of bioinspired attachment device design and fabrication is discussed. Then, the design principles of attachment devices are summarized in this article. The following section provides a systematic overview of climbing robots with bioinspired attachment devices. Finally, the current challenges and opportunities in bioinspired attachment research in robotics are discussed.

关键词: adhesion     bioinspired attachment     biomimetic gripper     climbing robot    

Role of stair-climbing test in predicting postoperative cardiopulmonary complications in elderly patients

Pei-Tu REN BM, Bao-Chun LU MM, Zhi-Liang CHEN MM, Hong FU MM,

《医学前沿(英文)》 2010年 第4卷 第1期   页码 77-81 doi: 10.1007/s11684-010-0005-x

摘要: One hundred and twenty-six patients above 80 years old with biliary diseases undergoing operations in Shaoxing People’s Hospital from Jan. 2002 to Jan. 2007 were analyzed retrospectively. All patients performed a preoperative stair-climbing test, and the risks for cardiopulmonary €complications were evaluated with pair-matching and linear correlations analysis between stair-climbing height (h) and left ventricular ejective factor (EF), forced vital capacity (FVC) and forced expiratory volume in one second (FEV). There was a significant difference in the incidence of cardiopulmonary complications among different stair-climbing heights. Stair-climbing heights were positively related with EF, FVC and FEV. This suggests that the stair-climbing test is an effective and simple method for predicting cardiopulmonary complications in elderly patients with biliary diseases.

关键词: biliary disease     cardiopulmonary complication     stair-climbing test    

三峡工程齿轮齿条爬升式升船机设计

钮新强,覃利明,于庆奎

《中国工程科学》 2011年 第13卷 第7期   页码 96-103

摘要:

三峡升船机具有提升重量大、升程高、上下游通航水位变幅大、水位变率快等特点,是目前世界上规模和技术难度最大的升船机。经过方案比选,三峡升船机最终确定采用齿轮齿条爬升式,其设备构造复杂,制造、安装及土建结构施工精度要求很高,并首次采用中德联合设计方式。概要介绍了三峡工程齿轮齿条爬升式升船机的总体布置、以及塔柱结构、重要设备的设计方案与关键技术。

关键词: 升船机     爬升式     安全机构     行程同步    

三峡升船机液压自升式模板施工技术

戴志清

《中国工程科学》 2013年 第15卷 第9期   页码 22-26

摘要:

三峡升船机塔柱混凝土施工工期紧,精度要求高,为保证施工进度和质量,采用了液压自升式模板。本文重点介绍了三峡升船机塔柱混凝土液压自升式模板施工技术、自升式模板改进措施以及为满足自升式模板上升而在塔柱板梁、牛腿处进行的结构处理措施。实践证明,液压自升式模板施工技术的应用与改进满足了三峡升船机塔柱筒体混凝土的设计要求,有效地提高施工效率、节约了成本,保证了工程质量并提高施工的安全性,可为其他水电工程施工提供借鉴。

关键词: 塔柱混凝土     液压自升式模板     混凝土浇筑     三峡升船机    

Review of human–robot coordination control for rehabilitation based on motor function evaluation

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0684-4

摘要: As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.

关键词: human–robot coupling     lower limb rehabilitation     exoskeleton robot     motor assessment     dynamical model     perception    

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0687-1

摘要: Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

关键词: masticatory robot     cable-driven     linear actuator     parallel robot     stiffness analysis    

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 271-284 doi: 10.1007/s11465-020-0623-1

摘要: Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

关键词: terrain classification     hexapod robot     legged robot     adaptive locomotion     gait control    

Innovative stair climber using associated wheels

Girish Sudhir MODAK,Manmohan Manikrao BHOOMKAR

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 299-310 doi: 10.1007/s11465-016-0374-1

摘要:

The study proposes an innovative and completely new but low-cost configuration of a platform that can easily climb stairs. This platform serves the purpose of a chassis. Different versions, such as staircase-climbing wheelchair or staircase-climbing trolley for material transferring, can be derived depending on the structure built on the platform. The driving wheels have a shape that completely matches with the profile of the steps. Complex components are eliminated. Thus, this platform is conveniently applicable in the configurations useful for climbing staircases.

关键词: stair-climbing platform     matching wheels     impaired mobility     affordable configuration    

Design and modeling of continuum robot based on virtual-center of motion mechanism

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0739-6

摘要: Continuum robot has attracted extensive attention since its emergence. It has multi-degree of freedom and high compliance, which give it significant advantages when traveling and operating in narrow spaces. The flexural virtual-center of motion (VCM) mechanism can be machined integrally, and this way eliminates the assembly between joints. Thus, it is well suited for use as a continuum robot joint. Therefore, a design method for continuum robots based on the VCM mechanism is proposed in this study. First, a novel VCM mechanism is formed using a double leaf-type isosceles-trapezoidal flexural pivot (D-LITFP), which is composed of a series of superimposed LITFPs, to enlarge its stroke. Then, the pseudo-rigid body (PRB) model of the leaf is extended to the VCM mechanism, and the stiffness and stroke of the D-LITFP are modeled. Second, the VCM mechanism is combined to form a flexural joint suitable for the continuum robot. Finally, experiments and simulations are used to validate the accuracy and validity of the PRB model by analyzing the performance (stiffness and stroke) of the VCM mechanism. Furthermore, the motion performance of the designed continuum robot is evaluated. Results show that the maximum stroke of the VCM mechanism is approximately 14.2°, the axial compressive strength is approximately 1915 N/mm, and the repeatable positioning accuracies of the continuum robot is approximately ±1.47° (bending angle) and ±2.46° (bending direction).

关键词: VCM mechanism     continuum robot     flexural joint     pseudo-rigid body model     cable-driven    

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 195-203 doi: 10.1007/s11465-016-0390-1

摘要:

Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

关键词: robot taping     path planning     robot manipulation     3D scanning    

A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

Prases K. MOHANTY,Dayal R. PARHI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 317-330 doi: 10.1007/s11465-014-0304-z

摘要:

Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.

关键词: mobile robot     obstacle avoidance     Invasive Weed Optimization     navigation    

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 197-200 doi: 10.1007/s11465-007-0033-7

摘要: Using two micro-motors, a novel omni-direction miniature wheeled robot is designed on the basis of the bi-corner driving principle. The robot takes advantage of the Bluetooth technology to wirelessly transmit data at a short distance. Its position and omni-direction motion are precise. A Charge Coupled Device (CCD) camera is used for measuring and for visual navi gation. A control system is developed. The precision of the position is 0.5 mm, the resolution is about 0.05 mm, and the maximum velocity is about 52 mm/s. The visual navigation and control system allow the robot to navigate and track the target and to accomplish autonomous locomotion.

关键词: measuring     distance     autonomous locomotion     advantage     navigation    

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 350-359 doi: 10.1007/s11465-013-0271-9

摘要:

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

关键词: parallel robot     flexible cable     suspended robot     dynamic    

一种用于寻找无人船回收海床基数据最佳通信点的梯度上升控制法 Research Papers

Jiu-cai JIN, Jie ZHANG, Zhi-chao LV

《信息与电子工程前沿(英文)》 2019年 第20卷 第6期   页码 751-759 doi: 10.1631/FITEE.1700732

摘要: 给出了一种在无人船声学回收海床基数据时寻找最佳通信点的控制方法。众所周知,梯度上升极值寻找法常应用于多平台或多智能体,这是因为多平台能大范围测量且易于梯度估计。单一平台测量范围有限,不能快速估计测量场,难以迅速获得测量场极值。本文提出一种无人船振荡运动形式,以获取海床基与无人船间水声通信链路强度数据。基于多元加权线性递归法,利用无人船振荡运动获取的新数据,不断更新水声通信链路强度场。基于梯度上升和人工势场方法,考虑未知场的递归估计,设计无人船最佳通信点控制器,并证明其稳定性。仿真结果表明该算法可靠、高效。

关键词: 无人船;数据回收;水声通信;梯度上升;极值寻找    

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 8-8 doi: 10.1007/s11465-021-0664-0

摘要: With the widespread application of legged robot in various fields, the demand for a robot with high locomotion and manipulation ability is increasing. Adding an extra arm is a useful but general method for a legged robot to obtain manipulation ability. Hence, this paper proposes a novel hexapod robot with two integrated leg–arm limbs that obtain dexterous manipulation functions besides locomotion ability without adding an extra arm. The manipulation modes can be divided into coordinated manipulation condition and single-limb manipulation condition. The former condition mainly includes fixed coordinated clamping case and fixed coordinated shearing case. For the fixed coordinated clamping case, the degrees of freedom (DOFs) analysis of equivalent parallel mechanism by using screw theory and the constraint equation of two integrated limbs are established. For the fixed coordinated shearing case, the coordinated working space is determined, and an ideal coordinated manipulation ball is presented to guide the coordinated shearing task. In addition, the constraint analysis of two adjacent integrated limbs is performed. Then, mobile manipulation with one integrated leg–arm limb while using pentapod gait is discussed as the single-limb manipulation condition, including gait switching analysis between hexapod gait and pentapod gait, different pentapod gaits analysis, and a complex six-DOF manipulation while walking. Corresponding experiments are implemented, including clamping tasks with two integrated limbs, coordinated shearing task by using two integrated limbs, and mobile manipulation with pentapod gait. This robot provides a new approach to building a multifunctional locomotion platform.

关键词: leg–arm integration     hexapod robot     fixed coordinated manipulation     mobile manipulation    

标题 作者 时间 类型 操作

Learning from biological attachment devices: applications of bioinspired reversible adhesive methods in robotics

期刊论文

Role of stair-climbing test in predicting postoperative cardiopulmonary complications in elderly patients

Pei-Tu REN BM, Bao-Chun LU MM, Zhi-Liang CHEN MM, Hong FU MM,

期刊论文

三峡工程齿轮齿条爬升式升船机设计

钮新强,覃利明,于庆奎

期刊论文

三峡升船机液压自升式模板施工技术

戴志清

期刊论文

Review of human–robot coordination control for rehabilitation based on motor function evaluation

期刊论文

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

期刊论文

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

期刊论文

Innovative stair climber using associated wheels

Girish Sudhir MODAK,Manmohan Manikrao BHOOMKAR

期刊论文

Design and modeling of continuum robot based on virtual-center of motion mechanism

期刊论文

Strategy for robot motion and path planning in robot taping

Qilong YUAN,I-Ming CHEN,Teguh Santoso LEMBONO,Simon Nelson LANDÉN,Victor MALMGREN

期刊论文

A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm

Prases K. MOHANTY,Dayal R. PARHI

期刊论文

An autonomous miniature wheeled robot based on visual feedback control

CHEN Haichu

期刊论文

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

期刊论文

一种用于寻找无人船回收海床基数据最佳通信点的梯度上升控制法

Jiu-cai JIN, Jie ZHANG, Zhi-chao LV

期刊论文

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

期刊论文